METODY PROBALIBISTYCZNE
PROCESY LOSOWE:
Pojęcie procesu losowego i jego opis
W punkcie II rozpatrywaliśmy zmienne losowe, które zależały tylko od przypadku czyli od
, w praktyce spotyka się na ogół bardziej skomplikowane wielkości losowe , które zmieniają się wraz ze zmianą pewnego parametru
, są one zatem zależne zarówno od przypadku, jak i od wartości tego parametru. Inaczej mówiąc dla opisu wyniku doświadczenia nie wystarcza już punkt przestrzeni , a niezbędna jest funkcja wspomnianego parametru. Jednym z historycznie pierwszych przykładów takich wielkości jest każda współrzędna cząsteczki w tzw. ruchu Browna, która nie tylko jest zmienną losową, ale także zależy od czasu. Innym przykładem są szumy zniekształcające sygnały radiowe, które są zmiennymi losowymi (np. z powodu z wyładowań atmosferycznych), a także zależą od czasu. Także liczba zadań (procesów) w systemie komputerowym, czy liczba pojazdów przejeżdżające przez dane skrzyżowanie są zmiennymi losowymi zależnymi również od czasu. Podkreślmy, że parametrem od którego zależą wymienione (i inne wielkości losowe) zmienne losowe nie musi być czas np. w ruchu turbulentnym prędkość cząsteczki cieczy jest zmienną losową (trójwymiarową) zależną do punktu przestrzeni. W ogólności parametr, o którym mówimy nie musi mieć w ogóle żadnej interpretacji fizycznej. Rozszerzenie teorii prawdopodobieństwa pozwalające badać zmienne losowe zależne od danego parametru nazywa się teorią procesów losowych (przypadkowych,stochastycznych).


- Definicja 1
- Procesem losowym nazywamy rodzinę zmiennych losowych
zależnych od parametru t i określonych na danej przestrzeni probabilistycznej (Ω,A,P).
Innymi słowy proces losowy to losowa funkcja parametru t, czyli taka funkcja, która
jest zmienną losowa.

Zmienną losową Xt, którą proces losowy jest w ustalonej chwili
nazywamy wartością tego procesu.

Zbiór wartości wszystkich zmiennych losowych
, nazywamy przestrzenią stanu procesu losowego lub przestrzenią stanu.

Jeśli zbiór jest skończony lub przeliczalny, to mówimy o procesach losowych z czasem dyskretnym. W pierwszym wypadku mamy do czynienia z n-wymiarową zmienną losową, a w drugim z odpowiednim ciągiem zmiennych losowych.
Choć niektóre klasy procesów losowych z czasem dyskretnym (np. łańcuchy Markowa) zasługują na uwagę, to jednak w dalszym ciagu skoncentrujemy się na procesach losowych z czasem ciągłym czyli takich, dla których T jest nieprzeliczalne.
Dla głębszego zrozumienia natury procesu losowego spójrzmy nań jeszcze z innej strony. Jak pamiętamy zmienna losowa przyporządkowywała zdarzeniu losowemu punkt w przestrzeni Rn. W przypadku procesu losowego mamy do czynienia z sytuacją gdy do opisu wyniku doświadczenia niezbędna jest funkcja ciągła, zwana realizacją procesu losowego.
W dalszym ciągu zakładamy, że mamy do czynienia ze skończonymi funkcjami losowymi, a zbiór wszystkich takich funkcji (realizacji) będziemy nazywali przestrzenią realizacji procesu losowego. Prowadzi to do drugiej definicji:
W dalszym ciągu zakładamy, że mamy do czynienia ze skończonymi funkcjami losowymi, a zbiór wszystkich takich funkcji (realizacji) będziemy nazywali przestrzenią realizacji procesu losowego. Prowadzi to do drugiej definicji:
- Definicja 2
- Procesem losowym nazywamy mierzalną względem P transformację przestrzeni zdarzeń elementarnych Ω w przestrzeni realizacji, przy czym realizacją procesu losowego nazywamy każdą skończoną funkcją rzeczywistą zmiennej
.
Definicja powyższa wynika ze spojrzenia na proces losowy jako na funkcję dwóch zmiennych
i
, ustalając t otrzymujemy zmienną losową , a ustalając ω otrzymujemy realizację .


Na ogół na przestrzeń realizacji procesu losowego narzuca się pewne ograniczenia np. żeby to była przestrzeń Banacha (niezerowa i zwyczajna).
Reasumując: graficznie można przedstawić te dwa punkty widzenia w następujacy sposób.
Pełne oznaczenie procesu losowego ma zatem postać
, lub 
przy czym w obu wypadkach zakłada się, że jest określona przestrzeń probabilistyczna
.


przy czym w obu wypadkach zakłada się, że jest określona przestrzeń probabilistyczna

Ponieważ jednak zależność od ω jako naturalną zwykle się pomija, otrzymujemy:
, lub
.


Ponadto, jeśli zbiór T jest zdefiniowany na początku rozważań to pomija się także zapis
i w rezultacie otrzymujemy :
Xt, lub X(t).

Xt, lub X(t).
Oznaczenie X(t) może zatem dotyczyć całego procesu losowego, jego jednej realizacji (dla ustalonego ω) lub jego jednej wartości, czyli zmiennej losowej (dla ustalonego t). Z kontekstu jednoznacznie wynika, o co w danym zapisie chodzi.
Przejdźmy do zapisu procesu losowego X(t). Będziemy rozpatrywać wyłącznie procesy losowe rzeczywiste (proces losowy zespolony ma postać: X(t) = X1(t) + iX2(t), gdzie X1(t) i X2(t) są procesami losowymi rzeczywistymi).
Ponieważ
proces losowy Xt jest zmienną, więc jego pełny opis w chwili t stanowi pełny rozkład prawdopodobieństwa tej zmiennej losowej. Rozkład taki nazywamy jednowymiarowym rozkładem prawdopodobieństwa procesu losowego. Jest on scharakteryzowany przez jednowymiarową dystrybuantę procesu losowego, w postaci :
F(x,t) = P[X(t) < x]

F(x,t) = P[X(t) < x]
Oczywiście rozkład jednowymiarowy procesu losowego nie charakteryzuje wzajemnej zależności między wartościami procesu (zmiennymi losowymi) w różnych chwilach. Jest on zatem ogólny tylko wtedy gdy dla dowolnych układow
wartości procesu losowego,są ciągami zmiennych losowych niezależnych, co na ogół nie zachodzi. W ogólności musimy zatem rozpatrywać łączny rozkład wartości procesu w różnych chwilach.

- Definicja
- n-wymiarowym rozkładem prawdopodobieństwa procesu losowego nazywamy łączny rozkład prawdopodobieństwa i jego wartości dla dowolnego układu chwili t1,t2,...,tn , czyli łączny rozkład prawdopodobieństwa wektora losowego [X(t1),X(t2),...,X(tn)] opisany n - wymiarową dystrybuantą procesu losowego :
F(x1,t1;x2,t2;...;xn,tn) = P(X(t1) < x1,X(t2) < x2,...,X(tn) < xn) Momenty procesu losowego
Podobnie jak dla zmiennych losowych również dla procesów losowych definiuje się pewne proste charakterystyki rozkładu, w szczególności momenty. Mając jednowymiarowy rozkład procesu możemy określić jego jednowymiarowe momenty np. zdefiniowane poniżej.- Definicja
- Wartością średnią procesu losowego X(t) nazywamy funkcję m(t), która
jest wartością średnią zmiennej losowej X(t), którą jest proces w chwili t:
m(t) = E[X(t)]
- Definicja
- Wariancją procesu losowego X(t) nazywamy funkcję σ2(t), która
jest wariancją zmiennej losowej X(t), którą jest proces w chwili t:
σ2(t) = D2[X(t)] = E[X(t) − m(t)]2
Oczywiście jednowymiarowe momenty procesu losowego nie charakteryzują jego zależności pomiędzy wartościami procesu w różnych chwilach. Żeby opisywać te zależności musimy rozpatrywać wyższe momenty, w szczególności rozpatrzymy 2 różne chwile t1,t2 .- Definicja
- Funkcję korelacyjną procesu losowego X(t) definiujemy jako:
Rx(t1,t2) = E{[X(t1) − m(t1)][X(t2) − m(t2)]}
Procesy stacjonarne
Ponieważ ogólna teoria procesów losowych jest dla celów praktycznych zbyt skomplikowana rozpatruje się pewne klasy tych procesów spełniających dodatkowe założenia i upraszczające analizę. W dalszych punktach rozpatrzmy kilka takich klas zaczynając od procesów stacjonarnych. Rozpatruje się procesy stacjonarne w sensie węższym i szerszym.- Definicja
- Proces losowy X(t) nazywamy stacjonarnym w węższym sensie, jeśli dla dowolnego
, dla dowolnego układu chwil t1,t2,...,tn dla dowolnego h takiego, że
zachodzi:
F(x1,t1;x2,t2;...;xn,tn) = F(x1,t1 + h;x2,t2 + h;...;xn,tn + h)
W szczególności dla n = 1 mamy:
F(x,t) = F(x,t + h)
co oznacza, że F(x,t) = F(x), zatem jednowymiarowe momenty takiego procesu nie zależą od t, w szczególności m(t) = m = const.Dla n = 2 mamy:
F(x1,t1;x2,t2) = F(x1,t1 + h;x2,t2 + h)
czyli
F(x1,t1;x2,t2) = F(x1,x2,τ)
gdzie τ = t2 − t1.Procesy o przyrostach niezależnych i procesy Markowa
- Definicja
- Proces losowy X(t) nazywamy procesem o przyrostach niezależnych jeżeli dla dowolnego ukladu
(uporządkowany układ chwil) zmienne losowe
są niezależne.
Ważną klasą procesów niezależnych stanowią procesy Poissona.- Definicja
- Proces losowy X(t) nazywamy procesem Markowa jeśli dla każdego
oraz dla dowolnych liczb rzeczywistych
zachodzi
- wielomianu (tzw. aproksymacja wielomianowa),
- funkcji sklejanych,
- funkcji matematycznych uzyskanych na drodze statystyki matematycznej (przede wszystkim regresji),
- sztucznych sieci neuronowych.
Ergodyczność procesów losowych
Zauważmy, że w celu wyznaczenia momentu procesu losowego musielibyśmy dysponować jednocześnie wszystkimi jego realizacjami, co w praktyce jest na ogół niemożliwe. W naturalny sposób powstaje więc pytanie, przy jakich założeniach można na podstawie pojedynczej realizacji procesu wyznaczyć jego momenty.
Odpowiedź na to pytanie jest przedmiotem tzw. twierdzeń ergodycznych, a procesy losowe dla których średnie po czasie (z pojedynczej realizacji) mogą być utożsamiane z odpowiednimi średnimi po zbiorze nazywają się procesami ergodycznymi względem odpowiedniego momentu (np. wartości średniej czy f. korelacyjnej).Można wykazać, że dla obszernej klasy procesów stacjonarnych warunek wystarczający ergodyczności względem wartości średniej i funkcji korelacyjnej ma postać:Zatem dla procesów stacjonarnych spełniajacych powyższy warunek mamyorazMETODY NUMERYCZNEAPROKSYMACJAAproksymacja – proces określania rozwiązań przybliżonych na podstawie rozwiązań znanych, które są bliskie rozwiązaniom dokładnym w ściśle sprecyzowanym sensie. Zazwyczaj aproksymuje się byty (np. funkcje) skomplikowane bytami prostszymi.Aproksymacja funkcji
Aproksymacje można wykorzystać w sytuacji, gdy nie istnieje funkcja analityczna pozwalająca na wyznaczenie wartości dla dowolnego z jej argumentów, a jednocześnie wartości tej nieznanej funkcji są dla pewnego zbioru jej argumentów znane. Mogą to być na przykład wyniki badań aktywności biologicznej dla wielu konfiguracji leków. Do wyznaczenia aproksymowanej aktywności biologicznej nieznanego leku można wówczas zastosować jedną z wielu metod aproksymacyjnych.
Aproksymowanie funkcji może polegać na przybliżaniu jej za pomocą kombinacji liniowej tzw. funkcji bazowych. Od funkcji aproksymującej, przybliżającej zadaną funkcję nie wymaga się, aby przechodziła ona przez jakieś konkretne punkty, tak jak to ma miejsce w interpolacji. Z matematycznego punktu widzenia aproksymacja funkcjiw pewnej przestrzeni Hilberta
jest zagadnieniem polegającym na odnalezieniu pewnej funkcji
gdzie
jest podprzestrzenią
tj.
takiej, by odległość (w sensie obowiązującej w
normy) między
a
była jak najmniejsza. Funkcja aproksymująca może wygładzać daną funkcję (gdy funkcja jest gładka, jest też różniczkowalna).
Aproksymacja funkcji powoduje pojawienie się błędów, zwanych błędami aproksymacji. Dużą zaletą aproksymacji w stosunku do interpolacji jest to, że aby dobrze przybliżać, funkcja aproksymująca nie musi być wielomianem bardzo dużego stopnia (w ogóle nie musi być wielomianem). Przybliżenie w tym wypadku rozumiane jest jako minimalizacja pewnej funkcji błędu. Prawdopodobnie najpopularniejszą miarą tego błędu jest średni błąd kwadratowy, ale możliwe są również inne funkcje błędu, jak choćby błąd średni.Istnieje wiele metod aproksymacyjnych. Jednymi z najbardziej popularnych są: aproksymacja średniokwadratowa i aproksymacja jednostajna oraz aproksymacja liniowa, gdzie funkcją bazową jest funkcja liniowa.Wiele z metod aproksymacyjnych posiada fazę wstępną, zwaną również fazą uczenia oraz fazę pracy. W fazie wstępnej, metody te wykorzystując zadane pary punktów i odpowiadających im wartości aproksymacyjnych niejako „dostosowują” swoją strukturę wewnętrzną zapisując dane, które zostaną wykorzystane później w fazie pracy, gdzie dla zadanego punktu dana metoda wygeneruje odpowiadającą mu wartość bądź wartości aproksymowane. Funkcja aproksymująca może być przedstawiona w różnej postaci. Najczęściej jest to postać:Funkcje aproksymujące w postaci wielomianu i funkcji sklejanych można wykorzystać jedynie wtedy, gdy funkcja aproksymowana jest w postaci jednej zmiennej.zrodlo :www/ wikipedia.pl
Brak komentarzy:
Prześlij komentarz